Digital Signatures with Minimal Overhead from Indifferentiable Random Invertible Functions
نویسندگان
چکیده
In a digital signature scheme with message recovery, rather than transmitting the message m and its signature σ, a single enhanced signature τ is transmitted. The verifier is able to recover m from τ and at the same time verify its authenticity. The two most important parameters of such a scheme are its security and overhead |τ | − |m|. A simple argument shows that for any scheme with “n bits security” |τ | − |m| ≥ n, i.e., the overhead is lower bounded by the security parameter n. Currently, the best known constructions in the random oracle model are far from this lower bound requiring an overhead of n + log qh, where qh is the number of queries to the random oracle. In this paper we give a construction which basically matches the n bit lower bound. We propose a simple digital signature scheme with n + o(log qh) bits overhead, where qh denotes the number of random oracle queries. Our construction works in two steps. First, we propose a signature scheme with message recovery having optimal overhead in a new ideal model, the random invertible function model. Second, we show that a four-round Feistel network with random oracles as round functions is tightly “public-indifferentiable” from a random invertible function. At the core of our indifferentiability proof is an almost tight upper bound for the expected number of edges of the densest “small” subgraph of a random Cayley graph, which may be of independent interest.
منابع مشابه
On the Public Indifferentiability and Correlation Intractability of the 6-Round Feistel Construction
We show that the Feistel construction with six rounds and random round functions is publicly indifferentiable from a random invertible permutation (a result that is not known to hold for full indifferentiability). Public indifferentiability (pub-indifferentiability for short) is a variant of indifferentiability introduced by Yoneyama et al. [29] and Dodis et al. [12] where the simulator knows a...
متن کاملEquivalence of the Random Oracle Model and the Ideal Cipher Model, Revisited
We consider the cryptographic problem of constructing an invertible random permutation from a public random function (i.e., which can be accessed by the adversary). This goal is formalized by the notion of indifferentiability of Maurer et al. (TCC 2004). This is the natural extension to the public setting of the well-studied problem of building random permutations from random functions, which w...
متن کاملProvable Security and Indifferentiability
In this thesis we consider different problems related to provable security and indifferentiability framework. Ideal primitives such as random oracles, ideal ciphers are theoretical abstractions of cryptographic hash functions and block ciphers respectively. These idealized models help us to argue security guarantee for various cryptographic schemes, for which standard model security proofs are ...
متن کاملSome Cryptanalytic Results on Zipper Hash and Concatenated Hash
At SAC 2006, Liskov proposed the zipper hash, a technique for constructing secure (indifferentiable from random oracles) hash functions based on weak (invertible) compression functions. Zipper hash is a two pass scheme, which makes it unfit for practical consideration. But, from the theoretical point of view it seemed to be secure, as it had resisted standard attacks for long. Recently, Andreev...
متن کاملDigital Signatures with Minimal Overhead
In a digital signature scheme with message recovery, rather than transmitting the message m and its signature σ, a single enhanced signature τ is transmitted. The verifier is able to recover m from τ and at the same time verify its authenticity. The two most important parameters of such a scheme are its security and the overhead |τ | − |m|. A simple argument shows that for any scheme with “n bi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013